The Effect of the Administration of Bovine Xenograft on the Accelerated Healing of Femoral Fracture in Domestic Dogs


  • Anggi Muhtar Pratama Graduate School of Life Sciences, Julius Maximilians University of Würzburg 97070 Würzburg, Germany
  • Rais Dwi Abadi
  • Raka Bayu Ratrisono
  • Setyo Budhi Department of Surgery and Radiology, Faculty of Veterinary Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia
  • Dwi Kristanto Laboratory of Veterinary Internal Medicine, Faculty of Veterinary Medicine, Universitas Brawijaya, Malang, Indonesia



bovine xenograft, dog, fracture, hydroxyapatite


Bovine xenografting is a method of grafting bovine bones to other species. This study aimed to determine the effect of the administration of bovine xenografts on accelerated healing in domestic dogs with femoral fractures. This study used a total of 4 dogs (two individuals as the treatment group and other two as the control group) diagnosed with diaphyseal femoral fractures. The bovine xenograft in the form of hydroxyapatite (Ca10(PO4)6(OH)) was synthesized in this study. The femur fracture surgery was carried out using the open reduction and internal fixation (ORIF) method, followed by the administration of 10 grams of Hydroxyapatite powder from the bovine bone in
the fracture area, in the treatment group. The control group was not treated with Hydroxyapatite. Radiographic examinations were carried out on days 0, 14, and 45 post-operation. The parameters observed included the formation of radiopaque mass on the radiographic imaging, indicating the formation of calli around the fracture area. The radiographic examination showed that in the treatment group, the radiopaque mass was apparent on day 14 post-operation while it was not observable in the control group. On day 45 post-operation, the mass was more clearly visible in the treatment group, while it was barely visible in the control group. This research indicated that bovine xenograft has the potential to accelerate the fracture healing process in domestic dogs


Abd El Raouf, M., Mekkawy, N. H. M., & AbdEl-Aal, A. M. (2017). Femur fractures and treatment options in 20 dogs admitted to our clinic from January 2013 to December 2015. Iraqi Journal of Veterinary Sciences, 31(2), 117–122.

Aminatun, A., Handayani, D. E. F., Widiyanti, P., Winarni, D., & Siswanto, S. (2019). In vivo approach on femur bone regeneration of white rat (Rattus norvegicus) with the use of hydroxyapatite from cuttlefish bone (Sepia spp.) as bone filler. Veterinary World, 12(6), 809–816.

Asma, B., Abdellatif, B., Mohame, H., Mokhtar, H., & Hamza, R. (2014). Bone Healing by the Use of Intramedullary Pinning in Dogs. OALib, 01(04), 1–6.

Budiatin, A. S., Khotib, J., Samirah, S., Ardianto, C., Gani, M. A., Putri, B. R. K. H., Arofik, H., Sadiwa, R. N., Lestari, I., Pratama, Y. A., Rahadiansyah, E., & Susilo, I. (2022). Acceleration of Bone Fracture Healing through the Use of Bovine Hydroxyapatite or Calcium Lactate Oral and Implant Bovine Hydroxyapatite–Gelatin on Bone Defect Animal Model. Polymers, 14(22), 4812.

Das, B. C., Roy, C. K., Biswas, S., Dey, T., Biswas, P. K., & Sutradhar, B. C. (2020). Retrograde intramedullary pinning for femur fracture management in a Labrador dog- a case report. Bangladesh Journal of Veterinary and Animal Sciences, 8(1), 139–142.

Graham, J. P. (2007). When to Panic About That Fracture Repair. 79th Western Veterinary Conferences.

Harwood, P. J., Newman, J. B., & Michael, A. L. R. (2010). (An update on fracture healing and nonunion. Orthopaedics and Trauma, 24(1), 9–23.

Joshi, D. O., Tank, P. H., Mahida, H. K., Dhami, M. A., Vedpathak, H. S., & Karle, A. S. (2010). Bone Grafting : An Overview. Veterinary World, 3(4), 198–200.

Kreszinger, M., Pecin, M., & Lovric, L. (2020). Surgical Treatment of Canine Femoral Fractures - a Review. Journal of World’s Poultry Research, 10(2), 137–145.

Marzook, H., Flifl, M. A. S., Denewar, M., & Elsheikh, H. A.-E. (2022). Biological Impact of Alloplastic Bone Graft vs Bovine Xenograft and Allograft Materials in Bone Healing: An Experimental Study. The Journal of Contemporary Dental Practice, 23(5), 482–491.

Piermattei, D. L., Flo, G. L., & DeCamp, C. E. (2017). Handbook of Small Animal Orthopedics and Fracture Repair (4th ed.). Saunders Elsevier.

Simon, S., Ganesh, R., Ayyappan, S., Rao, G. D., Suresh Kumar, R., Kundave, V. R., & Das, B. C. (2010). Incidences of pelvic limb fractures in dogs: A survey of 478 cases. Veterinary World, 3(3), 120–121.

Sudimartini, L. M., Wirata, I. W., Dharmayudha, A. A. G. O., Gunawan, I. W. N. F., & Sudipa, P. H. (2019). Radiograph of The Use of Pigs Bone as Graft Material to Femur Fracture Treatment in Dogs. Buletin Veteriner Udayana, 11(1), 21–27.

Suryadi. (2011). Synthesis and characterization of hydroxyapatite biomaterials by wet chemical precipitation process. Universitas Indonesia.

Talaat, A., Gadallah, S., Farghali, H., & Sharshar, A. (2022). Retrospective Study on Canine Femoral Fractures: Incidence and Surgical Management. Journal of Current Veterinary Research, 4(2), 91–103.

Tercanlioglu, H., & Sarierler, M. (2009). Femur Fracture and Treatment Options in Dogs Which

Brought Our Clinics. Lucrări Ştiinłifice Medicină Veterinară, XLII(2), 98–101.

Uddin, M. K., Islam, M. M., Hassan, M. Z., Rahman, M. M., Islam, M. R., Hoque, M. F., & Das, B. C. (2017). Internal fixation of fracture of femur of dog using intramedullary pinning. AsianAustralasian Journal of Bioscience and Biotechnology, 2(3), 243–246.

Witoko, M. C., Wirata, W., & Jaya Wardhita, A. A. (2021). Case Report: Os Femoral and Os Tibial Diaphysis Fracture on Local Dog. Journal of Veterinary and Animal Sciences, 4(2), 37–48.




How to Cite

Pratama, A. M., Abadi, R. D., Ratrisono, R. B., Budhi, S., & Kristanto, D. (2023). The Effect of the Administration of Bovine Xenograft on the Accelerated Healing of Femoral Fracture in Domestic Dogs. Veterinary Biomedical and Clinical Journal, 5(2), 70–77.