Effects of Acetone Extract of Green Tea (Camellia sinensis) on Diameter, Viability, and Germinal Vesicle Breakdown Rate of Zebrafish Oocytes (Danio rerio) Exposed to Heat Stress as an Animal Model

Authors

Habib Syaiful Arif Tuska
Faculty of Veterinary Medicine, Universitas Brawijaya, Malang, Indonesia
Aaliyah Nurul Hidayah
Faculty of Veterinary Medicine, Universitas Brawijaya, Malang, Indonesia
Bonick Kartini Lonameo
Faculty of Veterinary Medicine, Universitas Brawijaya, Malang, Indonesia
Umar Bello
Ministry of Animal Heath and Fisheries Development, Sokoto, Nigeria
Budiono
Gajayana University, Malang, Indonesia

DOI:

https://doi.org/10.21776/ub.VetBioClinJ.2024.006.02.2

Keywords:

antioxidants, heat stress, oocytes, ROS, Zebrafish

Abstract

Global warming is characterized by increasing temperatures of the earth's atmosphere, ocean and land, resulting in extreme climate change. The effects of climate change will affect animal health through increased ambient temperature (heat stress). This study using Zebrafish as animal model like our previuous study because Zebrafish, have 70% identical genetic similarity to humans. In addition, Zebrafish have specific approval from the U.S. Food and Drug Administration for new drug discovery research. Heat stress negatively affects animal health through an increase in Reactive Oxygen Species (ROS), especially in the reproductive system because it causes a decrease in reproductive efficiency, such as follicular development, oocyte quality, and oocyte maturation. Antioxidant supplementation, namely green tea extract, is needed to reduce the negative effects of heat stress. The purpose of this study was to analyze the difference of 4 µl dose of green tea extract (Camellia sinensis) on the diameter, viability, and Germinal Vesicle Breakdown (GVBD) rate of Zebrafish oocytes at normal temperature (28℃) and with exposure to heat stress (32℃; 34℃). Zebrafish oocytes were collected and grouped into 2 (two) treatment groups including, non-heat stress group (28℃) and heat stress group (32℃; 34℃) with 6 repetitions.  Quantitative data were processed using SPSS software with Two Way ANOVA analysis.  The results of Two Way ANOVA showed that green tea extract supplementation had a positive effect on the diameter, viability, and GVBD of Zebrafish oocytes. This is indicated by the significance of the percentage of diameter (P=0.002), viability (P=0.003), and GVBD rate (P=0.000).


References

  • Aleström, P., D’Angelo, L., Midtlyng, P. J., Schorderet, D. F., Schulte-Merker, S., Sohm, F., & Warner, S. (2020). Zebrafish: Housing and husbandry recommendations. Laboratory Animals, 54(3), 213–224. https://doi.org/10.1177/0023677219869037
  • Anisa, L., Firmansyah, M., Hamdani, D. M., Sherra, B. El, Irvanda, R., Putra, R. W., Febrian, T., Zaim, R. L., Yandriansyah, F. E., Diliarosta, S., Syah, N., Razak, A., & Barlian, E. (2021). Indonesia’s Participation in Responding to Global Warming Issues. Science and Environmental Journals for Postgraduate, 4(1), 54–62. http://senjop.ppj.unp.ac.id/index.php/senjop
  • Belenichev, I. F., Aliyeva, O. G., Popazova, O. O., & Bukhtiyarova, N. V. (2023). Involvement of heat shock proteins HSP70 in the mechanisms of endogenous neuroprotection: the prospect of using HSP70 modulators. Frontiers in Cellular Neuroscience, 17. https://doi.org/10.3389/fncel.2023.1131683
  • Berling, F., Castro, F. C. de, & Oliveira, A. C. dos S. (2022). Infuence of heat stress on in vitro oocyte and embryo production in high-yielding Holstein cows. Ciência Animal Brasileira, 23. https://doi.org/10.1590/1809-6891v23e-71852e
  • Chatterjee, A., Paul, A., Unnati, G. M., Rajput, R., Biswas, T., Kar, T., Basak, S., Mishra, N., Pandey, A., & Srivastava, A. P. (2020). MAPK cascade gene family in Camellia sinensis: In-silico identification, expression profiles and regulatory network analysis. BMC Genomics, 21(1), 613. https://doi.org/10.1186/s12864-020-07030-x
  • Chowdhury, S., & Saikia, S. K. (2020). Oxidative Stress in Fish: A Review. Journal of Scientific Research, 12(1), 145–160. https://doi.org/10.3329/jsr.v12i1.41716
  • Czerneková, M., Janelt, K., Student, S., Jönsson, K. I., & Poprawa, I. (2018). A comparative ultrastructure study of storage cells in the eutardigrade Richtersius coronifer in the hydrated state and after desiccation and heating stress. PLOS ONE, 13(8), e0201430. https://doi.org/10.1371/journal.pone.0201430
  • Da Broi, M. G., Giorgi, V. S. I., Wang, F., Keefe, D. L., Albertini, D., & Navarro, P. A. (2018). Influence of follicular fluid and cumulus cells on oocyte quality: clinical implications. Journal of Assisted Reproduction and Genetics, 35(5), 735–751. https://doi.org/10.1007/s10815-018-1143-3
  • Elkouby, Y. M., & Mullins, M. C. (2017). Methods for the analysis of early oogenesis in Zebrafish. Developmental Biology, 430(2), 310–324. https://doi.org/10.1016/j.ydbio.2016.12.014
  • Forester, S. C., & Lambert, J. D. (2011). The role of antioxidant versus pro‐oxidant effects of green tea polyphenols in cancer prevention. Molecular Nutrition & Food Research, 55(6), 844–854. https://doi.org/10.1002/mnfr.201000641
  • Gallo, A., Esposito, M. C., Boni, R., & Tosti, E. (2022). Oocyte quality assessment in marine invertebrates: a novel approach by fluorescence spectroscopy. Biological Research, 55(1), 34. https://doi.org/10.1186/s40659-022-00403-4
  • Guo, Z., Gao, S., Ouyang, J., Ma, L., & Bu, D. (2021). Impacts of Heat Stress-Induced Oxidative Stress on the Milk Protein Biosynthesis of Dairy Cows. Animals, 11(3), 726. https://doi.org/10.3390/ani11030726
  • Islam, M. J., Kunzmann, A., & Slater, M. J. (2022). Responses of aquaculture fish to climate change‐induced extreme temperatures: A review. Journal of the World Aquaculture Society, 53(2), 314–366. https://doi.org/10.1111/jwas.12853
  • Kamiloglu, S., Sari, G., Ozdal, T., & Capanoglu, E. (2020). Guidelines for cell viability assays. Food Frontiers, 1(3), 332–349. https://doi.org/10.1002/fft2.44
  • Karimah, U. (2021). Pengadaan Awal Fasilitas Pemeliharaan dan Upaya Perolehan Filial 1 (F1) Ikan Zebra (Danio rerio) sebagai Hewan Laboratorium. Bioscientist : Jurnal Ilmiah Biologi, 9(1), 142. https://doi.org/10.33394/bjib.v9i1.3750
  • Kawano, K., Sakaguchi, K., Madalitso, C., Ninpetch, N., Kobayashi, S., Furukawa, E., Yanagawa, Y., & Katagiri, S. (2022). Effect of heat exposure on the growth and developmental competence of bovine oocytes derived from early antral follicles. Scientific Reports, 12(1), 8857. https://doi.org/10.1038/s41598-022-12785-2
  • Khalili, M. A., Nottola, S. A., Shahedi, A., & Macchiarelli, G. (2013). Contribution of human oocyte architecture to success of in vitro maturation technology. Iran J Reprod Med, 11(1), 1–10.
  • Kotani, T., Maehata, K., & Takei, N. (2017). Regulation of Translationally Repressed mRNAs in Zebrafish and Mouse Oocytes (pp. 297–324). https://doi.org/10.1007/978-3-319-60855-6_13
  • Lacetera, N. (2019). Impact of climate change on animal health and welfare. Animal Frontiers, 9(1), 26–31. https://doi.org/10.1093/af/vfy030
  • Li, J., Gao, H., Tian, Z., Wu, Y., Wang, Y., Fang, Y., Lin, L., Han, Y., Wu, S., Haq, I., & Zeng, S. (2016). Effects of chronic heat stress on granulosa cell apoptosis and follicular atresia in mouse ovary. Journal of Animal Science and Biotechnology, 7(1), 57. https://doi.org/10.1186/s40104-016-0116-6
  • Maeshima, K., Iida, S., & Tamura, S. (2021). Physical Nature of Chromatin in the Nucleus. Cold Spring Harbor Perspectives in Biology, 13(5), a040675. https://doi.org/10.1101/cshperspect.a040675
  • Mahlo, S. M., & Eloff, J. N. (2014). Acetone leaf extracts of Breonadia salicina (Rubiaceae) and ursolic acid protect oranges against infection by Penicillium species. South African Journal of Botany, 93, 48–53. https://doi.org/10.1016/j.sajb.2014.03.003
  • Maleki, V., Taheri, E., Varshosaz, P., Tabrizi, F. P. F., Moludi, J., Jafari-Vayghan, H., Shadnoush, M., Jabbari, S. H. Y., Seifoleslami, M., & Alizadeh, M. (2021). A comprehensive insight into effects of green tea extract in polycystic ovary syndrome: a systematic review. Reproductive Biology and Endocrinology, 19(1), 147. https://doi.org/10.1186/s12958-021-00831-z
  • Mihalas, B. P., Redgrove, K. A., McLaughlin, E. A., & Nixon, B. (2017). Molecular Mechanisms Responsible for Increased Vulnerability of the Ageing Oocyte to Oxidative Damage. Oxidative Medicine and Cellular Longevity, 2017(1), 015874,. https://doi.org/10.1155/2017/4015874
  • Miller, A. (2013). Effects of Heat Stress on Oocyte Quality and Embryo Viability in Swine.
  • Mora, B. M. P., Kosior, M. A., Damiano, S., Longobardi, V., Presicce, G. A., Di Vuolo, G., Pacelli, G., Campanile, G., & Gasparrini, B. (2024). Dietary supplementation with green tea extract improves the antioxidant status and oocyte developmental competence in Italian Mediterranean buffaloes. Theriogenology, 215, 50–57. https://doi.org/10.1016/j.theriogenology.2023.11.022
  • Musial, C., Kuban-Jankowska, A., & Gorska-Ponikowska, M. (2020). Beneficial Properties of Green Tea Catechins. International Journal of Molecular Sciences, 21(5), 1744. https://doi.org/10.3390/ijms21051744
  • Novilla, A., Margahyani, W., & Davidson Rihibiha, D. (2022). Antioxidant Activities of Green Tea (Camellia Sinensis L.) Leaves From Ciwidey, West Java. KnE Medicine, 2(2), 143–150. https://doi.org/10.18502/kme.v2i2.11077
  • Nur, B., Permana, A., Priyadi, A., Mustofa, S. Z., & Murniasih, S. (2017). Induksi Ovulasi dan Pemijahan Ikan Agamysis (Agamyxis albomaculatus) Menggunakan Hormon yang Berbeda. Jurnal Riset Akuakultur, 12(2), 169. https://doi.org/10.15578/jra.12.2.2017.169-177
  • Parera, H., & Hadisutanto, B. (2014). In Vitro Fertilization Rate of Bovine Simmental Ongole Crossbred Oocytes). Jurnal Ilmu Ternak, 14(1), 28–31.
  • Pizzino, G., Irrera, N., Cucinotta, M., Pallio, G., Mannino, F., Arcoraci, V., Squadrito, F., Altavilla, D., & Bitto, A. (2017). Oxidative Stress: Harms and Benefits for Human Health. Oxidative Medicine and Cellular Longevity, 2017(1), 8416763. https://doi.org/10.1155/2017/8416763
  • Pors, S. E., Nikiforov, D., Cadenas, J., Ghezelayagh, Z., Wakimoto, Y., Jara, L. A. Z., Cheng, J., Dueholm, M., Macklon, K. T., Flachs, E. M., Mamsen, L. S., Kristensen, S. G., & Andersen, C. Y. (2022). Oocyte diameter predicts the maturation rate of human immature oocytes collected ex vivo. Journal of Assisted Reproduction and Genetics, 39(10), 2209–2214. https://doi.org/10.1007/s10815-022-02602-0
  • Prasad, S., Tiwari, M., Pandey, A. N., Shrivastav, T. G., & Chaube, S. K. (2016). Impact of stress on oocyte quality and reproductive outcome. Journal of Biomedical Science, 23(1), 36. https://doi.org/10.1186/s12929-016-0253-4
  • Rakha, S. I., Elmetwally, M. A., El-Sheikh Ali, H., Balboula, A., Mahmoud, A. M., & Zaabel, S. M. (2022). Importance of Antioxidant Supplementation during In Vitro Maturation of Mammalian Oocytes. Veterinary Sciences, 9(8), 439. https://doi.org/10.3390/vetsci9080439
  • Reed, B., & Jennings, M. (2011). Guidance on the housing and care of Zebrafish Danio rerio.
  • Residiwati, G., Shalawati, A. G., Lesmana, M. A., Anisa, A. K., Lonameo, B. K., & Tuska, H. S. A. (2024). Effects of orange peel extract (Citrus sinensis) treatment on zebrafish oocytes (Danio rerio) exposed to heat stress. Veterinary World, 17(8), 1821–1827. https://doi.org/10.14202/vetworld.2024.1821-1827
  • Sakatani, M. (2017). Effects of heat stress on bovine preimplantation embryos produced <i>in vitro</i> Journal of Reproduction and Development, 63(4), 347–352. https://doi.org/10.1262/jrd.2017-045
  • Scott, G. R., & Johnston, I. A. (2012). Temperature during embryonic development has persistent effects on thermal acclimation capacity in zebrafish. Proceedings of the National Academy of Sciences, 109(35), 14247–14252. https://doi.org/10.1073/pnas.1205012109
  • Shabri, & Rohdiana, D. (2016). Optimization and characterization of green tea polyphenol extract from various solvents. Jurnal Penelitian Teh Dan Kina, 19(1), 57–66.
  • Teletchea, F., Gardeur, J. ‐N., Kamler, E., & Fontaine, P. (2009). The relationship of oocyte diameter and incubation temperature to incubation time in temperate freshwater fish species. Journal of Fish Biology, 74(3), 652–668. https://doi.org/10.1111/j.1095-8649.2008.02160.x
  • Tripathi, S. K., Nandi, S., Gupta, P. S. P., & Mondal, S. (2023). Antioxidants supplementation improves the quality of in vitro produced ovine embryos with amendments in key development gene expressions. Theriogenology, 201, 41–52. https://doi.org/10.1016/j.theriogenology.2022.11.048
  • Wang, W.-D., Wu, C.-Y., & Lonameo, B. K. (2019). Toxic Effects of Paclobutrazol on Developing Organs at Different Exposure Times in Zebrafish. Toxics, 7(4), 62. https://doi.org/10.3390/toxics7040062
  • Wolfenson, D., & Roth, Z. (2019). Impact of heat stress on cow reproduction and fertility. Animal Frontiers, 9(1), 32–38. https://doi.org/10.1093/af/vfy027
  • Xie, L., Tang, Q., Yang, L., & Chen, L. (2016). Insulin-like growth factor I promotes oocyte maturation through increasing the expression and phosphorylation of epidermal growth factor receptor in the zebrafish ovary. Molecular and Cellular Endocrinology, 419, 198–207. https://doi.org/10.1016/j.mce.2015.10.018
  • Yan, Z., Zhong, Y., Duan, Y., Chen, Q., & Li, F. (2020). Antioxidant mechanism of tea polyphenols and its impact on health benefits. Animal Nutrition, 6(2), 115–123. https://doi.org/10.1016/j.aninu.2020.01.001
  • Zhang, Y., Lin, H., Liu, C., Huang, J., & Liu, Z. (2020). A review for physiological activities of EGCG and the role in improving fertility in humans/mammals. Biomedicine & Pharmacotherapy, 127, 110186. https://doi.org/10.1016/j.biopha.2020.110186
  • Zhao, L., Sun, Q.-Y., & Ge, Z.-J. (2021). Potential role of tea extract in oocyte development. Food & Function, 12(21), 10311–10323. https://doi.org/10.1039/D1FO01725J

Downloads

Download data is not yet available.

Downloads


Published

2024-10-02

How to Cite

Tuska, H. S. A., Hidayah, A. N., Lonameo, B. K., Bello, U., & Budiono. (2024). Effects of Acetone Extract of Green Tea (Camellia sinensis) on Diameter, Viability, and Germinal Vesicle Breakdown Rate of Zebrafish Oocytes (Danio rerio) Exposed to Heat Stress as an Animal Model. Veterinary Biomedical and Clinical Journal, 6(2). https://doi.org/10.21776/ub.VetBioClinJ.2024.006.02.2

Issue


Section

Articles


Most read articles by the same author(s)